

lavoro:

RISTRUTTURAZIONE EDILIZIA CON ADEGUAMENTO SISMICO PER CAMBIO DI DESTINAZIONE D'USO DI PARTE DEI MAGAZZINI COMUNALI PER LA REALIZZAZIONE DI UN IMPIANTO SPORTIVO DI ATLETICA LEGGERA

MURO DI CONTENIMENTO IN C.A. PISTA ATLETICA

luogo:

PROVINCIA DI REGGIO EMILIA COMUNE DI RUBIERA Via Della Chiusa, 2/A - 42048 Riubiera (RE)

data:

Gennaio 2018

contenuto:

RELAZIONE TECNICA ESPLICATIVA RELAZIONE DI CALCOLO

INTERVENTO PRIVO DI RILEVANZA PER LA PUBBLICA INCOLUMITA' AI FINI SISMICI AI SENSI DELLA DGR 2272/2016

committente:

COMUNE DI RUBIERA Via Emilia, 5 42048 Rubiera (RE)

tecnico:

اnGeos نام

PROGETTISTA STRUTTURALE
PAOLO DELMONTE Ingegnere

Via Franchini, 4/D 42027 Montecchio (RE)

COLLABORATORE

RITA PARISOLI Ingegnere

A

INDICE

1 ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE	3
A. DESCRIZIONE DEL CONTESTO AMBIENTALE	3
B. DESCRIZIONE DELLA STRUTTURA	3
C. NORME DI RIFERIMENTO COGENTI	4
D. AZIONI DI PROGETTO SULLA COSTRUZIONE	5
E. DESCRIZIONE DEI MATERIALI	13
F. CRITERI DI PROGETTAZIONE E DI MODELLAZIONE	
G. COMBINAZIONI DELLE AZIONI	
H. METODO DI ANALISI	
I. CRITERI DI VERIFICA AGLI S.L. INDAGATI IN PRESENZA DI AZIONE SISMICA	
J. RISULTATI DELL'ANALISI	
J.1 SINTESI DELLE VERIFICHE DI SICUREZZA	
J.2 GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI	
K CODICE DI CALCOLO	

1 ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE

A. DESCRIZIONE DEL CONTESTO AMBIENTALE

La presente relazione si riferisce alla realizzazione di pista di atletica da costruirsi lungo il fronte Nord del fabbricato "Magazzini Comunali" di proprietà comunale, ubicato in via Della Chiusa n° 2/A a Rubiera (RE).

Identificativi catastali: foglio 27, mappale 186 sub 1-2 - Comune di Rubiera

Coordinate

Longitudine 10°,77928 E Latitudine 44°,64396 N

H s.l.m. 53 metri

Figura 1 UBICAZIONE INTERVENTO

B. DESCRIZIONE DELLA STRUTTURA

L'intervento in oggetto consiste nella realizzazione, in corrispondenza del fronte Nord del fabbricato, della nuova pista di atletica per uno sviluppo in pianta pari a 29.30 m di lunghezza per 6.05 m d larghezza. Lungo il perimetro della pista stessa, a contenimento della massicciata di sottofondo, è in progetto la realizzazione di muri di contenimento in c.a., progettati per un'altezza massima del terreno di monte pari a 0.80 m. La ciabatta e la mensola dei suddetti muri hanno spessore rispettivamente pari 0.30 m e 0.25 m mentre la base è pari a 0.80 m.

Si ritiene pertanto corretto considerare l'intervento, <u>ai sensi dell'elenco A dell'allegato 1 della Delibera di</u> Giunta Regionale Emilia-Romagna n. 2272/2016, **privo di rilevanza per la pubblica incolumità ai fini sismici**, in quanto ricadente al punto A.2.1.a "Opere di sostegno in genere (muri in c.a., gabbionate, muri

<u>cellulari, terre rinforzate), di altezza fuori terra <= 1,50m, con inclinazione media del terrapieno</u> <u>sull'orizzontale <=15° o per le quali non siano presenti carichi permanenti direttamente agenti sul cuneo di spinta. (L0)"</u>

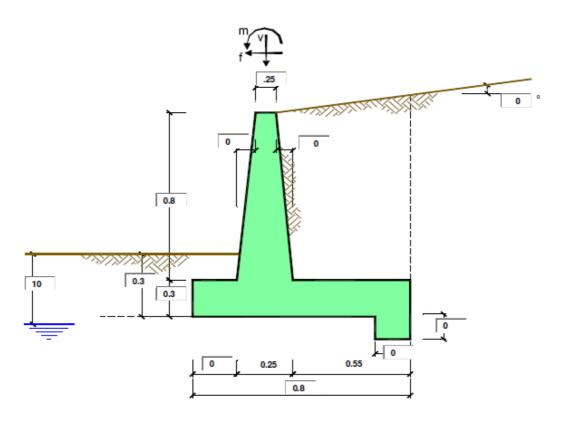
Nella fase di ricerca documentale eseguita in sede di valutazione della sicurezza del fabbricato esistente, è stato possibile reperire tramite l'Amministrazione Comunale una relazione geologica commissionata al Dott. Geol. Giorgio Gasparini, in occasione della realizzazione di un fabbricato in un lotto adiacente a quello dei magazzini oggetto di verifica. Sono state eseguite due penetrometrie statiche che permettono di ricavare le le caratteristiche geo-meccaniche dei terreni in esame.

Al di sotto del terreno agrario, si mette in evidenza la presenza di limi argillosi ed argille limose; è stata rilevata la presenza di acque libere ad una profondità di circa 4 m dal piano campagna.

E' stato condotto inoltre uno stendimento sismico, con tecnica MASW, che ha fissato per il suolo in esame una Categoria C "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti", avendo misurato una velocità Vs30 pari a 237 m/s.

Al fine di condurre le verifiche di carattere geotecnico in condizioni drenate, è stata chiesta al Dott. Geol. Giorgio Gasparini un'integrazione alle suddette indagini. In tale ambito sono stati forniti i seguenti parametri geotecnici:

```
\phi' = 32.35^{\circ}
c' = 16.3 \text{ KPa}
\gamma_t = 1850 \text{ daN/m}^3
```


C. NORME DI RIFERIMENTO COGENTI

Il quadro normativo tecnico, assunto quale riferimento cogente nello sviluppo della progettazione strutturale è il seguente:

- <1> D.P.R. n. 380 06/06/2001 "Testo unico delle disposizioni legislative e regolamentari in materia di edilizia"
- <2> D.M. 14/01/2008 "Norme tecniche per le costruzioni"
- <3> Circolare n. 617 del 02/02/2009 "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al D.M. del 14/01/2008
- <4> UNI EN 206-1: 2006 "Classi di esposizione ambientale per il calcestruzzo"
- <5> UNI EN 1993-1-1:2005 "Eurocodice 3 Progettazione delle strutture di acciaio, parte 1-1 regole generali e regole per gli edifici
- <6> Delibera della Giunta della Regione Emilia Romagna n. 2272/2016

Nel progetto in esame non è stato fatto uso di norme o documenti tecnici ad integrazione del quadro normativo assunto quale cogente.

D. AZIONI DI PROGETTO SULLA COSTRUZIONE

Dati geotecnici condizioni drenate

						valori caratteristici		valori di	progetto
	Geotecnici					SLI	E	STR/GEO	EQU
Dati Terrapien o	Angolo di attrito del terrapieno		(9)		φ'	30.0	00	30.00	24.79
Dati	Peso Unità di Volume del terrapieno		(kN/m ²)		γ	18.5	50	18.50	18.50
₽	Angolo di attrito terreno-superficie ideale		(9)		δ	0.0	0	0.00	0.00
	Condizioni			⊛ dr	enate	O Non	Drenate		
2 8	Coesione Terreno di Fondazione		(kPa)		c1'	16.3	30	16.30	13.04
Dat Terreno Fondazione	Angolo di attrito del Terreno di Fondazione		(9		φl'	32.2	25	32.25	26.78
da T	Peso Unità di Volume del Terreno di Fondazione		(kN/m²)		γ1	18.5	50	18.50	18.50
For	Peso Unità di Volume del Rinterro della Fondazione		(kN/m²)		γd	18.5	50	18.50	18.50
_	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	2.0	0		
	Modulo di deformazione		(kN/m²)		Е	1500	000		
	Accelerazione sismica				- /-	0.4047		1	
					a _g /g	0.1617	(-)		
-	Coefficiente Amplificazione Stratigrafico				Ss	1.469	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				ST	1	(-)		
Ö	Coefficiente di riduzione dell'accelerazione massima				βs	0.5	(-)		
Tage 1	Coefficiente sismico orizzontale					0.11876865			
_	Coefficiente sismico verticale			_	kv	0.0594	(-)	1	
	Muro libero di traslare o ruotare				•) si C) no		
		1	SI	E	\neg	STR/G	SEO.	E)II
	Coeff. di Spinta Attiva Statico	ka	0.333	<u> </u>	\dashv	0.333		0.409	
₽	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.405			0.405		0.489	
Spinta Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.415			0.415		0.501	
Spinta	Coeff. Di Spinta Passiva	kp	3.288			3.288		2.640	
8 0	Coeff. Di Spirita Passiva Sismica sisma +	kps+	3.079			3.079		2.450	
0	Coeff. Di Spinta Passiva Sismica sisma -	kps-	3.051			3.051		2.425	

				valori caratteristici	valori di p	rogetto
Dati Geotecnici				SLE	STR/GEO	EQU
ien	Angolo di attrito del terrapieno	(9	φ'	30.00	30.00	24.79
Dati Terrapien o	Peso Unità di Volume del terrapieno	(kN/m ²)	Y	18.50	18.50	18.50
e_	Angolo di attrito terreno-superficie ideale	(9)	δ	0.00	0.00	0.00
	Condizioni		O drenate	Non Drenate		
2 9	Resistenza a Taglio non drenata	(kPa)	cu	40.00	40.00	28.57
Dat Terreno Fondazione	Angolo di attrito Terreno-Fondazione	(9	φ1'	0.00	0.00	0.00
e g	Peso Unità di Volume del Terreno di Fondazione	(ktV/m ³)	γ1	18.50	18.50	18.50
Fon	Peso Unità di Volume del Rinterro della Fondazione	(ktV/m ²)	γd	18.50	18.50	18.50
_	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	2.00		
	Modulo di deformazione	(kN/m²)	E	150000		
	Accelerazione sismica		a _a /g	0.1617 (-)	1	
	Coefficiente Amplificazione Stratigrafico		Ss	1,469 (-)		
Sismici	Coefficiente Amplificazione Topografico		ST	1 (-)		
l lis	Coefficiente di riduzione dell'accelerazione massima		βs	0.5 (-)		
TE C	Coefficiente sismico orizzontale		kh	0.11876865 (-)		
ď	Coefficiente sismico verticale		kv	0.0594 (-)		
	Muro libero di traslare o ruotare		•	si O no]	

		SI	LE	STR/0	GEO	EC	UC
_	Coeff. di Spinta Attiva Statico ki	0.333		0.333		0.409	
₽	Coeff. Di Spinta Attiva Sismica sisma + kas-	0.405		0.405		0.489	
Spinta	Coeff. Di Spinta Attiva Sismica sisma - kas	0.415		0.415		0.501	
Sple	Coeff. Di Spinta Passiva k	1.000		1.000		1.000	
Š	Coeff. Di Spinta Passiva Sismica sisma + kps-	1.000		1.000		1.000	
	Coeff. Di Spinta Passiva Sismica sisma - kps	1.000		1.000		1.000	

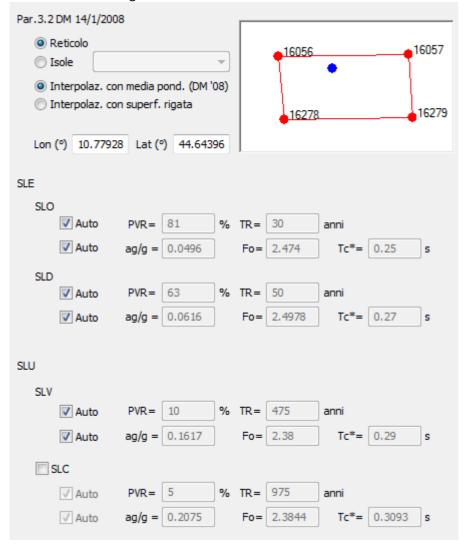
				valori caratteristici	valori di p	rogetto
Carichi /	Agenti			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte O si ● no	(kN/m ²)	qp	0.00	0.00	0.00
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
ర క్	Forza Verticale in Testa permanente	(kN/m)	vp		0.00	0.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	4.00	6.00	6.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f		0.00	0.00
뷿	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	v		0.00	0.00
දු ක	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m		0.00	0.00
	Coefficienti di combinazione condizione frequen	te Ψ1	0.75	condizione quasi permar	nente Ψ2	0.00
E e	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
절흔	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs			
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS			
0 00	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms			

Azione sismica (punto 3.2 della <2>)

L'opera è realizzata in area posta in comune di Rubiera (RE), alla quota topografica di 53 m. s.l.m., in zona sismica 3.

Le coordinate rappresentative dell'area sono:

Latitudine 44°,64396 N Longitudine 10°,77928 E


Ai sensi del D.M. 14 gennaio 2008 "Norme Tecniche per le Costruzioni", in ragione delle caratteristiche dell'opera, si assume:

V_N= vita nominale 50 anni (opere ordinarie)

Classe d'uso II (normale affollamento, opere infrastrutturali, costruzioni ordinarie)

Periodo di riferimento per l'azione sismica $V_R = V_N \cdot C_U = 50 \cdot 1 = 50$

Dalla zonazione sismica si hanno i seguenti dati:

Nella fase di ricerca documentale, è stato possibile reperire tramite l'Amministrazione Comunale una relazione geologica commissionata al Dott. Geol. Giorgio Gasparini, in occasione della realizzazione di un fabbricato in un lotto adiacente a quello dei magazzini oggetto di verifica.

In tale occasione è stato condotto uno stendimento sismico, con tecnica MASW, che ha fissato per il suolo in esame una Categoria C "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti", avendo misurato una velocità V_{s30} pari a 237 m/s e una categoria topografica T1 a cui corrispondono i seguenti coefficienti:

- coefficiente di amplificazione stratrigrafica $S_s=1.469$; - coefficiente di amplificazione topografica $S_\tau=1.000$.

Nelle condizioni di carico sismiche, oltre all'addizionale sismica della spinta del terreno, vengono conteggiati gli effetti inerziali ottenuti moltiplicando le masse per i corrispondenti coefficienti di intensità sismica (k_h e k_v).

SPINTA DEL TERRENO E DEL SOVRACCARICO (STATICA)

coeff. di spinta attiva $\lambda_a = tg^2 \ (\pi/4 - \Phi/2)$ spinta terreno $S_t = 1/2 * \gamma * H^{2*} \lambda_a$ spinta sovraccarico accidentale $S_{\text{qacc}} = q^* H^* \lambda_a$

(punto di applicazione a 1/3 di H)

(punto di applicazione a 1/2 di H)

SPINTA DEL TERRENO IN CONDIZIONI SISMICHE

Noti:

$$a_g/g=0.1617$$
 $S_S=1.469$ $S_T=1$

Considerando la mensola libera di traslare o di ruotare in condizioni sismiche, si assume il fattore β_m =0.24 (per categoria di suolo C ed essendo soddisfatta la seguente disequazione 0.1<a_pre>s/g<0.2).

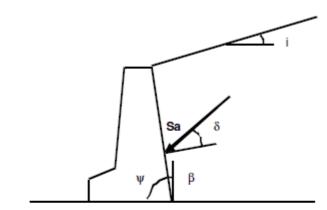
Si determinano i coefficienti di intensità sismica:

$$k_h = \beta_m * S_s * S_T * a_g / g = 0.0570$$

$$k_v = \pm k_h/2 = \pm 0.0285$$

tali coefficienti consentono il calcolo dei coefficienti di spinta attiva e passiva con la formula di Mononobe-Okabe e si utilizzano anche per valutare le azioni sismiche sulle masse strutturali.

$$\theta$$
+=arctan[$k_h/(1+k_v)$]= 3°.1721


$$\theta$$
-=arctan[$k_h/(1-k_v)$]= 3°.3578

Fissato $i=0^{\circ}$ (superficie terrapieno orizzontale), e $\beta=0$ (pareti verticali), si applica Mononobe-Okabe per il calcolo dei coefficienti di spinta attiva $k_{as}+e$ $k_{as}-$ dai quali si ricavano le addizionali simiche relative alla spinta del terreno.

Sul terreno di monte si è poi considerato un sovraccarico accidentale pari a: q=400 daN/mg.

Si considera inoltre l'addizionale sismica proporzionale al carico gravitazionale del muro.

COEFFICIENTI DI SPINTA

$$\begin{aligned} & \text{per } i \leq \phi' - \theta & \quad k_a = \frac{\text{sen }^2(\psi + \phi' - \theta)}{\text{cos } \theta \text{sen }^2 \psi \text{sen } (\psi - \theta - \delta) } \Bigg[1 + \sqrt{\frac{\text{sen } (\phi' + \delta) \text{sen } (\phi' - i - \theta)}{\text{sen } (\psi - \theta - \delta) \text{sen } (\psi + i)}} \Bigg]^2 \\ & \text{per } i > \phi' - \theta & \quad k_a = \frac{\text{sen}^2(\psi + \phi' - \theta)}{\text{cos } \theta \text{sen}^2 \psi \text{sen } (\psi - \theta - \delta)} \\ & \quad k_b = \frac{\text{sen}^2(\psi + \phi' - \theta)}{\text{cos } \theta \text{sen }^2 \psi \text{sen } (\psi + \theta)} \Bigg[1 - \sqrt{\frac{\text{sen } \phi' \text{sen } (\phi' + i - \theta)}{\text{sen } (\psi + \theta)}} \Bigg]^2} \end{aligned}$$

Coefficienti di spinta condizioni drenate

Coefficienti di spinta SLE

 $\phi' = 30.0$ (°) i = 0.0 (°) $\delta = 0.00$ (°)

cofficienti di spinta attiva

STATICO

 $kah = Ka^*cos(\delta_{sup M})$

ka = 0.3333 (-) kah = 0.3333 (-)

SISMICO

 $k_n = 0.1188$ $k_v = 0.0594$

 $\theta^+ = arctg \; (k_h/(1+k_v)) \qquad \theta = \qquad \qquad 6.40 \qquad (°) \qquad \qquad \theta^- = arctg \; (k_h/(1-k_v)) \qquad \theta = \qquad \qquad 7.20 \qquad (°)$

kas+ = 0.4050 (-) kas = 0.4152 (-)

cofficienti di spinta passiva

(resistenza a taglio nulla tra terreno e muro)

 ϕ_1 ' = 32.25 0.562869

- condizioni statiche - condizioni sismiche

kp = 3.2883 (-) (Rankine) $kps^+= 3.0785$ (-)

kps = 3.0510 (-)

Coefficienti di spinta SLU STR/GEO

 $\varphi' =$ 30.00 δ_{sup id} = 0.00 (°) cofficienti di spinta attiva **STATICO** $kah = Ka*cos(\delta_{supid})$ ka = 0.3333 (-) kah = 0.3333 (-) **SISMICO** kas+ = 0.4050 (-) kas = 0.4152 (-) cofficienti di spinta passiva (resistenza a taglio nulla tra terreno e muro) $\varphi_1' = 32.25$ - condizioni statiche - condizioni sismiche 3.2883 (-) (Rankine) kps⁺= 3.0785 (-) kps = 3.0510 (-) Coefficienti di spinta SLU EQU $\varphi' =$ $\delta_{\text{sup id}} = 0.00$ 24.8 (°) cofficienti di spinta attiva **STATICO** $kah = Ka^*cos(\delta_{supid})$ ka = 0.4091 (-) kah = 0.4091 (-) SISMICO kas+ = 0.4894 (-) kas = 0.5010 (-) cofficienti di spinta passiva (resistenza a taglio nulla tra terreno e muro) $\varphi_1' =$ 26.78 - condizioni statiche - condizioni sismiche 2.6404 (-) (Rankine) kp = kps+= 2.4504 (-) kps = 2.4251 (-)

Coefficienti di spinta condizioni non drenate

Coefficienti di spinta SLE

 $\phi' = 30.0$ (°) i = 0.0 (°) $\delta = 0.00$ (°)

cofficienti di spinta attiva

STATICO

 $kah = Ka^*cos(\delta_{sup kt})$

ka = 0.3333 (-) kah = 0.3333 (-)

SISMICO

 $k_h = 0.1188$ $k_v = 0.0594$

 $\theta^+ = \operatorname{arctg}(k_h/(1+k_v))$ $\theta = 6.40$ (°) $\theta^- = \operatorname{arctg}(k_h/(1-k_v))$ $\theta = 7.20$ (°)

kas+ = 0.4050 (-) kas- = 0.4152 (-)

cofficienti di spinta passiva

(resistenza a taglio nulla tra terreno e muro)

 $\Phi_1' = 0.00$

- condizioni statiche - condizioni sismiche

kp = 1.0000 (-) (Rankine) $kps^+= 1.0000$ (-)

kps = 1.0000 (-)

Coefficienti di spinta SLU STR/GEO

 $\varphi' =$ 30.00 $\delta_{\text{sup id}} =$ 0.00 (°) cofficienti di spinta attiva **STATICO** $kah = Ka*cos(\delta_{supid})$ 0.3333 (-) ka = 0.3333 (-) kah = SISMICO kas+ = 0.4050 (-) kas = 0.4152 (-) cofficienti di spinta passiva (resistenza a taglio nulla tra terreno e muro) $\phi_1' = 0.00$ - condizioni statiche - condizioni sismiche 1.0000 (-) kp = 1.0000 (-) (Rankine) kps⁺= kps = 1.0000 (-) Coefficienti di spinta SLU EQU φ' = $\delta_{\text{sup id}} = 0.00$ 24.8 (°) cofficienti di spinta attiva **STATICO** $kah = Ka^*cos(\delta_{supid})$ 0.4091 (-) ka = 0.4091 (-) kah = SISMICO kas+ = 0.4894 (-) kas = 0.5010 (-) cofficienti di spinta passiva (resistenza a taglio nulla tra terreno e muro) $\varphi_1' =$ 0.00 - condizioni statiche - condizioni sismiche kp = 1.0000 (-) (Rankine) 1.0000 (-) kps+= kps = 1.0000 (-)

E. DESCRIZIONE DEI MATERIALI

La scelta dei materiali è finalizzata a garantire la necessaria durabilità delle caratteristiche fisiche e meccaniche per tutta la vita utile prevista per la struttura.

CEMENTO ARMATO Le opere di cemento armato in fondazione devono effettuarsi con i seguenti materiali: Calcestruzzo classe C25/30 (classe di esposizione ambientale XC2, in conformità con la UNI EN 206-1: 2006) Acciaio in barre tonde ad aderenza migliorata B 450 C controllato in cantiere

STRUTTURE DI FONDAZIONE IN C.A.

Si definisce una classe di esposizione ambientale XC2.

Rapporto A/C max 0.6

Contenuto minimo di cemento 300 daN/m³ Classe di resistenza minima (N/mm²) C25/30 Copriferro minimo (mm) 25

CALCESTRUZZO CLASSE C25/30

Resistenza caratteristica cilindrica a compressione $f_{ck}=250 \text{ daN/cm}^2$ Resistenza caratteristica cubica a compressione $R_{ck}=300 \text{ daN/cm}^2$ Resistenza media a trazione $f_{ctm}=26 \text{ daN/cm}^2$ Resistenza caratteristica a trazione $f_{ctk}=18.2 \text{ daN/cm}^2$ Valore medio modulo di elasticità normale $E=314758 \text{ daN/cm}^2$ Valore medio modulo di elasticità tangenziale $G=131149 \text{ daN/cm}^2$

ACCIAIO B450C

Tensione caratteristica di rottura $f_{tk} = 5400 \text{ daN/cm}^2$ Tensione caratteristica di snervamento $f_{yk} = 4500 \text{ daN/cm}^2$ Valore medio modulo di elasticità normale $E=2000000 \text{ daN/cm}^2$ Valore medio modulo di elasticità tangenziale $G=769231 \text{ daN/cm}^2$

F. CRITERI DI PROGETTAZIONE E DI MODELLAZIONE

L'analisi strutturale è stata svolta risolvendo gli schemi a mensola sottoposti ad analisi statiche e sismiche lineari.

Per i muri di sostegno devono essere effettuate le verifiche dei seguenti stati limite (par. 6.5.3.1.1delle <2>):

SLU di tipo geotecnica (GEO) e di equilibrio di corpo rigido (EQU)

- stabilità globale del complesso opera di sostegno-terreno;
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento;

SLU di tipo strutturale (STR)

- raggiungimento della resistenza negli elementi strutturali.

Si adotta l'approccio progettuale **2** che prevede un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

VERIFICA DI STABILITÀ GLOBALE OPERA DI SOSTEGNO-TERRENO

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e nella Tabella 6.8.I per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo (γ_R =1).

SLU DI SCORRIMENTO

Le rimanenti verifiche (scorrimento, collasso per carico limite dell'insieme fondazione-terreno e ribaltamento) vengono effettuate secondol'Approccio 2: (A1+M1+R3)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Le verifiche di tipo geotecnico sono effettuate secondo l'Approccio 2.

Le verifiche SLU di tipo geotecnico (GEO) sono effettuate considerando il muro controterra come corpo rigido.

Per quanto riguarda le verifiche di tipo strutturale (SLV), il dimensionamento della ciabatta di fondazione e della mensola verticale sono effettuati considerando lo schema statico di trave incastrata.

G. COMBINAZIONI DELLE AZIONI

Vedi paragrafo D.

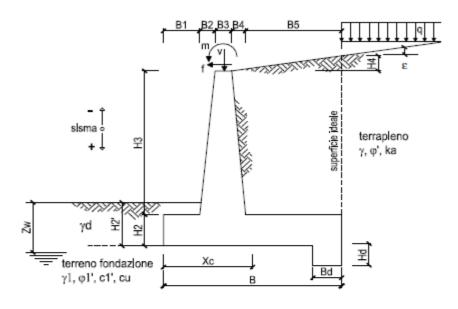
H. METODO DI ANALISI

Vedi paragrafo F.

I. CRITERI DI VERIFICA AGLI S.L. INDAGATI IN PRESENZA DI AZIONE SISMICA

Per i muri di sostegno devono essere effettuate le verifiche dei seguenti stati limite (par. 6.5.3.1.1delle <2>):

SLU di tipo geotecnica (GEO) e di equilibrio di corpo rigido (EQU)


- stabilità globale del complesso opera di sostegno-terreno;
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento;

SLU di tipo strutturale (STR)

- raggiungimento della resistenza negli elementi strutturali.

J. RISULTATI DELL'ANALISI

J.1 SINTESI DELLE VERIFICHE DI SICUREZZA

OPERA Esempio

DATI DI PROGETTO:

Geometria del Muro

Elevazione	H3 =	0.80	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.25	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	0.80	(m)
Spessore Fondazione	H2 =	0.30	(m)
Suola Lato Valle	B1 =	0.00	(m)
Suola Lato Monte	B5 =	0.55	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	XC =	0.40	(m)

Peso Specifico del Calcestruzzo	ycls =	25.00	(kN/m ³)

FORZE VERTICALI

- Peso del Mui	o (Pm)	Γ	SLE	STR/GEO	EQU
Pm1 =	(B2*H3*ycls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*ycls)	(kN/m)	5.00	5.00	4.50
Pm3 =	(B4*H3*ycls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*ycls)	(kN/m)	6.00	6.00	5.40
Pm5 =	(Bd*Hd*ycls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	11.00	11.00	9.90
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*y')	(kN/m)	8.14	8.14	7.33
Pt2 =	(0,5*(B4+B5)*H4*y')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3*y')/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	8.14	8.14	7.33

15

(kN/m) 2.2 3.3 (kN/m) 0

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

MOMENTIDE	LEE TONZE VENT. HISPETTO AL FIEDE DI VALLE DE	L MONO			
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0.5*B3)	(kNm/m)	0.63	0.63	0.56
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	2.40	2.40	2.16
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 +Mm5	(kNm/m)	3.03	3.03	2.72
WIIII -	MIIIT T MIIIZ T MIIID T MIII4 TMIIID	(Kashirin)	5.05	3.03	2.12
- Terrapieno e s	sovr, perm, sulla scarpa di monte dei muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	4.27	4.27	3.85
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	4.27	4.27	3.85
		,			
- Sovraccarico	accidentale sulla scarpa di monte dei muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	1.155	1.7325	
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	0		
0011 000. 010111	(511521551112 (54155))	()			
INTERPRED	MUDO E DEL TERRAPIENO				
	MURO E DEL TERRAPIENO				
	ntale e verticale del muro (Ps)				
Ps h=	Pm*kh	(kN/m)		1.31	
Ps v =	Pm*kv	(kN/m)		0.65	
	ntale e verticale del terrapieno a tergo del muro (Pts)				
Ptsh =	Pt*kh	(kN/m)		0.97	
Ptsv =	Pt*kv	(kN/m)		0.48	
	izzontale di momento dovuto all'inerzia del muro (MPs h)				
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)		0.00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		0.42	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0.11	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		0.52	
WI 3 II-	WII STEWN SEEWN SEEWN SEEWN SE	(KINITETII)		0.52	
- Incremento ve	rticale di momento dovuto all'inerzia del muro (MPs v)				
MPs1 V=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00	
MPs2 V=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		0.04	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		0.14	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00	
MPS V=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		0.18	
IVIES V=	MILS LEMILS SERVICES	(KINITVIII)		0.10	
- Incremento or	izzontale di momento dovuto all'inerzia del terrapieno (MF	ets h)			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		0.68	
MPts2 h=				0.00	
MPts2 n= MPts3 h=	kh*Pt2*(H2 + H3 + H4/3) kh*Pt3*(H2+H3*2/3)	(kNm/m)		0.00	
	*	(kNm/m)			
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		0.68	
Ingramanta	utionio di momente devute all'inergio del terrenica e Attric	w			
	rticale di momento dovuto all'inerzia del terrapieno (MPts			0.05	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		0.25	
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		0.25	

Condizioni drenate

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5*γ*(H2+H3+H4+Hd)2*ka	(kN/m)	3.73	4.85	5.04
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	1.47	2.20	2.70
	orizzontale condizione statica				
Sth =	St*cosŏ	(kN/m)	3.73	4.85	5.04
Sqh perm = Sqh acc =	Sq perm*cos8 Sq acc*cos8	(kN/m) (kN/m)	0.00 1.47	0.00 2.20	0.00 2.70
oqiraco =	24 222 222	(Ki Vill)	1.47	2.20	2.70
	verticale condizione statica				
Stv =	Strsenő	(kN/m)	0.00	0.00	0.00
Sqv perm= Sqv acc =	Sq perm*senδ Sq acc*senδ	(kN/m) (kN/m)	0.00	0.00	0.00
54. 555	34 333 3310	(u.c.i.)		0.00	0.00
 Spinta passiva 	a sul dente				
Sp=1/2*g1"*Hd2"	*k ½*γ ₁ '"Hd ² *kp+(2*c ₁ "kp ^{0.5} +γ1"kp*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	1.37	1.78	1.85
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm⊨	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.81	1.21	1.49
MSq2 perm⊨ MSq2 acc =	Sqv perm*B Sqv acc*B	(kNm/m) (kNm/m)	0.00	0.00	0.00
	ld ³ *kp/3+(2*c1**kp ^{0.5} +y1**kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
		(,			
	VUTI ALLE FORZE ESTERNE	(let less ten)	0.00	0.00	0.00
Mfext1 = Mfext2 =	mp + m (fp + f)*(H3 + H2)	(kNm/m) (kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.00	0.00	0.00
	(1)	(,			
VERIFICA AL	LO SCORRIMENTO (STR/GEO)				
Risultante forze	3 2		10.14	(leh l/mn)	
N =	Pm + Pt + v + Stv + Sqv perm + Sqv acc		19.14	(kN/m)	
Risultante forze	orizzontali (T)				
T =	Sth + Sqh + f		7.05	(kN/m)	
Confficients di	attrito alla base (f)				
f =	tgo1'		0.63	(-)	
	91-		0.00	()	
Fs scorr.	(N*f + Sp) / T		1.71	>	1.1
VERIFICA AL	RIBALTAMENTO (EQU)				
Momento stabil	izzanto (Ms)				
MS =	Mm + Mt + Mfext3		6.57	(kNm/m)	
Momento ribalta			0.00	(lebber in)	
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp		3.33	(kNm/m)	
E 11 - 11					
Fs ribaltam	nento Ms / Mr		1.97	>	1

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)		Nmin 19.14	Nmax 22.44	(kN/m)
Risultante forze orizzontali (T) T = Sth + Sqh + 1 - Sp		7.05	7.05	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $ MM \ = \ \Sigma M $		4.31	6.04	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM		3.35	2.93	(kNm/m)
Formula Generale per il Calcolo dei Carico Limite Unitrario (Brinch	-Hansen, 1970)		
Fondazione Nastriforme				
$qlim = c'Nc*lc + q_0*Nq*lq + 0,5*\pmb{\gamma}1*B*N\pmb{\gamma}^l\pmb{\gamma}$				
c1' coesione terreno di fondaz. φ1' angolo di attrito terreno di fondaz. γ1 peso unità di volume terreno fondaz.		16.30 32.25 18.50		(kPa) (°) (kN/m³)
q₀ =γd*H2' sovraccarico stabilizzante		5.55		(kN/m²)
e = M / N eccentricità B*= B - 2e larghezza equivalente		0.17 0.45	0.13 0.54	(m) (m)
l valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da	a Vesic (1975)			
$\begin{array}{ll} Nq = tg^2(45 + \phi'/2)^*e^{(x^*tg(\phi'))} & (1 \text{ in cond. nd}) \\ Nc = (Nq - 1)/tg(\phi') & (2+\pi \text{ in cond. nd}) \\ N\gamma = 2^*(Nq + 1)^*tg(\phi') & (0 \text{ in cond. nd}) \end{array}$		23.87 36.24 31.38		(-) (-) (-)
l valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Ve	esic (1975)			
$\begin{split} &Iq = (1 - T/(N + B^*c'cotg\phi'))^m \\ &Ic = Iq - (1 - Iq)/(Nq - 1) \\ &I\gamma = (1 - T/(N + B^*c'cotg\phi'))^{m+1} \end{split}$		0.59 0.58 0.46	0.65 0.58 0.49	(-) (-) (-)
(fondazione nastriforme m = 2)				
qlim (carico limite unitario)		479.26	490.36	(kN/m²)
FS carico limite $F = q lim^*B^*/N$	Nmin Nmax	11.28 11.77	>	1.4

Condizioni non drenate

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze N =	verticall (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (S	ovr acc)	Nmin 20.28	Nmax 20.28	(kN/m)
Risultante forze	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		7.08		(kN/m)
Risultante dei n	nomenti rispetto al piede di valle (MM)		4.77	477	(kNm/m)
	to al baricentro della fondazione (M)		4.77	4.77	(KINIIIII)
M =	Xc"N - MM		3.34	3.34	(kNm/m)
Formula Gene	rale per il Calcolo del Carico Limite Unitrario (Brinc	h-Hansen, 1970)			
Fondazione Na	striforme				
qlim = c'Nc*ic	+ q ₀ *Nq*lq + 0,5* γ 1*B*N γ*lγ				
cu	res. al taglio nd terreno di fondaz.		40.00		(kN/mq)
γ1	peso unità di volume terreno fondaz.		18.50		(kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		5.55		(kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.16 0.47	0.16 0.47	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975)			. ,
$Nq = tq^2(45 + \varphi)$	7/2)*e ^{(x*lg(p*))} (1 in cond. nd)		1.00		(-)
Nc = (Nq - 1)/tg Ny = 2*(Nq + 1)			5.14 0.00		(-) (-)
	e ly sono stati valutati con le espressioni suggerite da V	esic (1975)	0.00		()
Iq = (1 - T/(N +	B*c'cotqe')) ^m (1 in cond. nd)		1.00	1.00	(-)
IC = (1 - mT/(E))	3* cu*Nc))		0.85	0.85	(-)
$i\gamma = (1 - T/(N + i))$	3*c'cotg\(\phi\)"""				(-)
(fondazione nas	striforme m = 2)				
qlim	(carico limite unitario)		181.15	181.15	(kN/m ²)
FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	4.20 4.20	>	1.4

Condizioni drenate

CONDIZIONE SISMICA +

SPINTE DEL 1	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
	0,5*γ*(H2+H3+H4+Hd)2*ka	(kN/m)	3.73	3.73	4.58
Sst1 sism =	0,5*y"(1+kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	1.07	1.07	1.22
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
		. ,			
	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosŏ	(kN/m)	3.73		4.58
	Sst1 sism*cosŏ	(kN/m)	1.07	1.07	1.22
	Ssq1 perm*cos8	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
Componento	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*sen8	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senő	(kN/m)	0.00	0.00	0.00
	Ssq1 perm*senő	(kN/m)	0.00		0.00
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	0.00	0.00	0.00
00411 000-	5541 455 5516	(la e iii)	0.00	0.00	0.00
- Spinta passiva	a sul dente				
Sp=1/2"y ₁ '(1+kV)	Hd ² *kps++(2*c ₁ **kps+0.5+γ1' (1+kv) kps+*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
 Condizione sis 	smica +		oee.	OTHER CO.	Luo
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	1.37	1.37	1.68
MSst1 sism⊨	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	0.39	0.39	0.45
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =		(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSsq2 =	Ssq1v * B y,"Hd ³ *kps*/3+(2*c1**kps* ^{0.5} +y1**kps**H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ "Hu"kps"/3+(2"C1"kps""+γ1"kps"H2)"Hu"/2	(kNm/m)	0.00	0.00	0.00
HOUSENERS	WITH ALL E FORTE FOTERING				
MOMENTI DO	VUTI ALLE FORZE ESTERNE	(let less (en)		0.00	
Mfext2 =	mp+ms	(kNm/m)		0.00	
Mfext3 =	(fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m)		0.00	
MIEXIS =	(VPTVS) (B1 TB2 T B3/2)	(KINIII)		0.00	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze					
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		20.28	(kN/m)	
Risultante forze	orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		7.08	(kN/m)	
				(
	attrito alla base (f)				
f =	tgφ1'		0.63	(-)	
Fo.	(Ntt - Cn) / T		1.81		1.1
Fs =	(N*f + Sp) / T		1.01	>	1.1
VERIFICA AL	RIBALTAMENTO				
Momento stabil	izzante (Ms)				
Ms =	Mm + Mt + Mfext3		7.30	(kNm/m)	
Momento ribalta	anto (Mr)				
Mr =	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		2 20	(kNm/m)	
AVII =	поэстигоацтинели типелистигортиготиріз		2.09	(KINIIIIII)	
Fr =	Ms / Mr		2.52	>	1
-				_	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze N =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + ((Sovr acc)	Nmin 20.28	Nmax 20.28	(kN/m)
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		7.08		(kN/m)
Risultante dei n	nomenti rispetto al piede di valle (MM) Σ M		4.77	4.77	(kNm/m)
Momento rispet	to al baricentro della fondazione (M) Xc*N - MM		3.34	3.34	(kNm/m)
Formula Gene	rale per il Calcolo dei Carico Limite Unitrario (Brin	ich-Hansen, 197	0)		
Fondazione Na	striforme				
qlim = c'Nc*ic	+ q ₀ *Nq*lq + 0,5* y 1*B*N y*ly				
C1' φ1' '1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		16.30 32.25 18.50		(kN/mq) (°) (kN/m³)
q ₀ =γ d* H2'	sovraccarico stabilizzante		5.55		(kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.16 0.47	0.16 0.47	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg $N\gamma = 2*(Nq + 1)$	(φ') (2+π in cond. nd)		23.87 36.24 31.38		(-) (-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da	Vesic (1975)			
iq = (1 - T/(N + iC = iq - (1 - iq)/(i + iQ)) $i\gamma = (1 - T/(N + iQ)/(i + iQ)$	(Nq - 1)		0.61 0.59 0.48	0.61 0.59 0.48	(-) (-) (-)
(fondazione na	striforme m = 2)				
qlim	(carico limite unitario)		497.37	497.37	(kN/m²)
FS carico lir	nite F = qlim*B*/ N	Nmin Nmax	11.54 11.54	>	1.4

Condizioni non drenate

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze (verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (So	ovr acc)	Nmin 20.28	Nmax 20.28	(kN/m)
Risultante forze (orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		7.08		(kN/m)
	pmenti rispetto al piede di valle (MM) ΣM		4.77	4.77	(kNm/m)
	o al baricentro della fondazione (M) Xc*N - MM		3.34	3.34	(kNm/m)
Formula Genera	ale per Il Calcolo del Carlco Limite Unitrario (Brinci	n-Hansen, 1970)			
Fondazione Nas	triforme				
qlim = c'Nc*lc +	q ₀ *Nq*lq + 0,5*γ1*Β*Nγ*lγ				
cu	res. al taglio nd terreno di fondaz.		40.00		(kN/mq)
γ1	peso unità di volume terreno fondaz.		18.50		(kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		5.55		(kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.16 0.47	0.16 0.47	(m) (m)
I valori di Nc, Nq	e Ng sono stati valutati con le espressioni suggerite d	a Vesic (1975)			
Nq = $tg^2(45 + \phi')/NC = (Nq - 1)/tg(N\gamma = 2*(Nq + 1)*t$	p') (2+π in cond. nd)		1.00 5.14 0.00		(-) (-)
l valori di ic, iq e	iy sono stati valutati con le espressioni suggerite da V	esic (1975)			
Iq = (1 - T/(N + B Ic = (1 - m T / (B* Iγ = (1 - T/(N + B*	cu*Nc))		1.00 0.85	1.00 0.85	(-) (-)
(fondazione nast	triforme m = 2)				
qlim	(carico limite unitario)		181.15	181.15	(kN/m²)
FS carico lim	ite F = qlim*B*/ N	Nmin Nmax	4.20 4.20	>	1.4

Condizioni drenate

CONDIZIONE SISMICA -

SPINTE DEL 1	FERRENO E DEL SOVRACCARICO Ione sismica -		SLE	STR/GEO	EQU
Sst1 stat =	0,5*γ*(H2+H3+H4+Hd)2*Ka	(kN/m)	3.73	3.73	4.58
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	0.64	0.64	0.69
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cos8	(kN/m)	3.73	3.73	4.58
	Sst1 sism*cos8	(kN/m)	0.64	0.64	0.69
Ssq1h perm= Ssq1h acc=	Ssq1 perm*cosô Ssq1 acc*cosô	(kN/m) (kN/m)	0.00	0.00	0.00
Componento	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senő	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senő	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senő	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½"γ ₁ '(1-kv)	Hd ² *kps ⁻ +(2*c ₁ *kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO smica -		SLE	STR/GEO	EQU
		'		-	
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	1.37	1.37	1.68
MSst1 sism⊨ MSst2 stat =	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B	(kNm/m)	0.23	0.23	0.25
	Sstiv sism* B	(kNm/m) (kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ "*Hd ³ *kps [†] /3+(2*c1"kps ^{+0.5} +γ1"kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 = Mfext3 =	(fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m)		0.00	
	(19110) (2112212012)	(,			
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		18.00	(kN/m)	
Risultante forze	orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		6.64	(kN/m)	
	attrito alla base (f)				
f =	tgφ1"		0.63	(-)	
Fs =	(N*f + Sp) / T		1.71	>	1.1
VEDICIOA AL	DIDAL TAMENTO				
VEHIFICA AL	RIBALTAMENTO				
Momento stabi	lizzante (Ms) Mm + Mt + Mfext3		7.00	/ k/Mm/m \	
Ms =			7.30	(kNm/m)	
Momento ribalt Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		3.57	(kNm/m)	
				,,	
Fr =	Ms / Mr		2.05	>	1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze	verticali (N) Pm+ Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv		Nmin 18.00	Nmax 18.00	(kN/m)
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		6.64		(kN/m)
Risultante dei n MM =	nomenti rispetto al piede di valle (MM) Σ M		4.06	4.06	(kNm/m)
Momento rispet M =	to al baricentro della fondazione (M) Xc*N - MM		3.14	3.14	(kNm/m)
Formula Gene	rale per Il Calcolo del Carico Limite Unitrario (Brinci	h-Hansen, 1970	0)		
Fondazione Na	stritorme				
qlim = c'Nc*ic	+ q ₀ *Nq*lq + 0,5* y 1*B*N y*ly				
C1' φ1' Υ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		16.30 32.25 18.50		(kN/mq) (°) (kN/m³)
q ₀ =γd*H2'	sovraccarico stabilizzante		5.55		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.17 0.45	0.17 0.45	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite d	la Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg $N\gamma = 2^{*}(Nq + 1)$	(φ') (2+π in cond. nd)		23.87 36.24 31.38		(-) (-) (-)
I valori di ic, iq e	γ sono stati valutati con le espressioni suggerite da V	esic (1975)			
iq = (1 - T/(N + I)) ic = iq - (1 - iq)/(N + I) $i\gamma = (1 - T/(N + I))$	Nq - 1)		0.60 0.58 0.47	0.60 0.58 0.47	(-) (-) (-)
(fondazione nas	striforme m = 2)				
qlim	(carico limite unitario)		486.48	486.48	(kN/m²)
FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	12.20 12.20	>	1.4

Condizioni non drenate

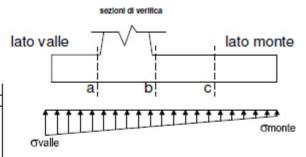
VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze N =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v -	+ Ptsv	Nmin 18.00	Nmax 18.00	(kN/m)
Risultante forze	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		6.64		(kN/m)
Risultante dei n	nomenti rispetto al piede di valle (MM) Σ M		4.06	4.06	(kNm/m)
Momento rispet M =	to al baricentro della fondazione (M) Xc*N - MM		3.14	3.14	(kNm/m)
Formula Gene	rale per il Calcolo del Carlco Limite Unitra	ario (Brinch-Hansen, 1970	0)		
Fondazione Na	striforme				
qlim = c'Nc*ic	+ q ₀ *Nq*lq + 0,5* y 1*B*N y *ly				
cu	res. al taglio nd terreno di fondaz.		40.00		(kN/mq)
Υ1	peso unità di volume terreno fondaz.		18.50		(kN/m³)
q ₀ =γd*H2'	sovraccarico stabilizzante		5.55		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.17 0.45	0.17 0.45	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni	suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg $N\gamma = 2*(Nq + 1)$	(φ') (2+π in cond. nd)		1.00 5.14 0.00		(-) (-) (-)
I valori di ic, iq	e lγ sono stati valutati con le espressioni sug	gerite da Vesic (1975)			
IQ = (1 - T/(N + I)) IC = (1 - M T / (I)) $I\gamma = (1 - T/(N + I))$	3* cu*Nc))		1.00 0.86	1.00 0.86	(-) (-) (-)
(fondazione na:	striforme m = 2)				
qlim	(carico limite unitario)		181.77	181.77	(kN/m²)
FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	4.56 4.56	>	1.4

Verifica allo Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

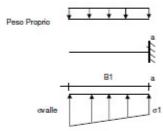

ovalle = N/A+M/Wgg

omonte = N/A - M/ Wgg

A = 1.0°B 0.80

Wgg - 1.0°B2/6 -0.11 (m³)

0000	N	M	c valle	o monte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	19.14	3.35	56.66	0.00
Statuco	22,44	2.93	55.55	0.55
	20.28	3.34	57.44	0.00
sisma+	20.28	3.34	57.44	0.00
	18.00	3.14	53.18	0.00
sisma-	18.00	3.14	53.18	0.00



Mensola Lato Valle

Peso Proprio. PP-

7.50 (kN/m) Ma = \sigma1*B12/2 + (\sigmavalle - \sigma1)*B12/3 - PP*B12/2*(1±kv) Va = σ1*B1 + (σvalle - σ1)*B1/2 - PP*B1*(1±kv)

	ovalle	61	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
	56.66	56.66	0.00	0.00
statico	55.55	55.55	0.00	0.00
	57.44	57.44	0.00	0.00
sisma+	57.44	57.44	0.00	0.00
	53.18	53.18	0.00	0.00
sisma-	53.18	53.18	0.00	0.00

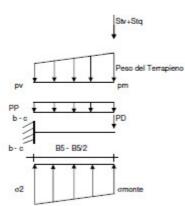
 Mensola Lato Monte

 PP = 7.50

 PD = 0.00
 (kN/m²) 7.50 0.00

peso proprio soletta fondazione peso proprio dente

		Nmin	N max stat	N max sism	
pm	-	14.80	20.80	14.80	(kN/m ²)
pvb	-	14.80	20.80	14.80	(kN/m ²)
DWD	_	14.90	20.80	14.90	(kN/m ²)


 $Mb = (\sigma_{monter}(pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma 2b \cdot \sigma_{monte})^*B5^2/6 \cdot (pm-pvb))^*(1\pm kv)^*B5^2/3 +$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

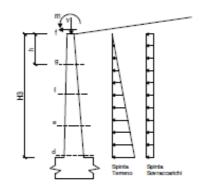
 $\begin{aligned} &\text{Mc} = & (\sigma_{monthir}(\text{pvc+PP})^*(1\pm kv))^*(85!2)^2/2 + (\sigma 2c - \sigma_{monthi})^*(85!2)^2/6 + (\text{pm-pvc})^*(1\pm kv)^*(85!2)^2/3 + \\ & - (\text{Stv+Sqv})^*(85!2) + \text{DD}^*(1\pm kv)^*(85!2 + 8d!2) + \text{PD}^*(kh^*(\text{Hd} + \text{H2}/2) + \text{Msp+Sp}^*(\text{H2}/2) + \text{Msp}^*(\text{H2}/2) +$

 $Vb = (\sigma_{monte} \cdot (pvb + PP)^* (1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 \cdot (pm - pvb))^* (1 \pm kv)^*B5/2 \cdot (Stv + Sqv) - PD^* (1 \pm kv)$

 $Vo = (\sigma_{monta} \cdot (pvc + PP)^* (1 \pm kv))^* (B5/2) + (\sigma 2c - \sigma_{monta})^* (B5/2)/2 - (pm-pvc)^* (1 \pm kv)^* (B5/2)/2 - (Stv + Sqv) - PD' (1 \pm kv)$

	e monte	σ2b	Mb	Vb	62 0	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kWm ²]	[kNm]	[kN]
statico	0.00	35.69	-2.30	-4.67	12.63	-0.80	-5.18
StateCo	0.55	38.36	-2.29	-4.86	19.48	-0.81	-5.03
	0.00	37.10	-2.29	-4.53	14.73	-0.81	-5.16
sisma+	0.00	37.10	-2.29	-4.53	14.73	-0.81	-5.16
	0.00	33.54	-2.15	-4.37	11.94	-0.75	-4.88
sisma-	0.00	33.54	-2.15	-4.37	11.94	-0.75	-4.86

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO


Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{ortor.}^* \gamma^* (1 \pm kv)^* h^2 * h/3$

N_{eet} - v

 $N_{pp+ineris} = \Sigma Pm_i^*(1\pm kv)$

 $\begin{array}{lll} \text{Vt stat} = & \text{V_2 Ka_{ortor}$}^* \gamma^* (1 \pm k v)^* h^2 \\ \text{Vt sism} = & \text{V_2}^* \gamma^* (Kas_{ortor}$^* (1 \pm k v) - Ka_{ortor})^* h^2 \\ \text{Vq} & = & \text{Ka_{ortor}$}^* q^* h \\ \text{V}_{ort} & = & \text{f} \\ \text{V}_{host is} & = & \text{ΣPm}^* k h \end{array}$

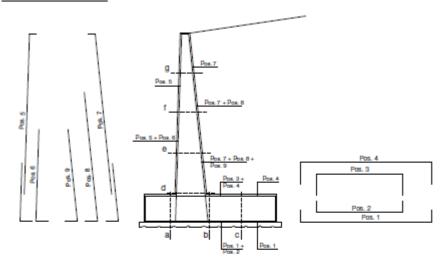
condizione statica

sezione	h	Mt	Mq	Mext	M _{tot}	Next	N _{pp}	N _{tot}
SCLIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kWm]	[kN/m]
d-d	0.80	0.68	0.64	0.00	1.32	0.00	5.00	5.00
0-0	0.60	0.29	0.36	0.00	0.65	0.00	3.75	3.75
f-f	0.40	0.09	0.16	0.00	0.25	0.00	2.50	2.50
g-g	0.20	0.01	0.04	0.00	0.05	0.00	1.25	1.25

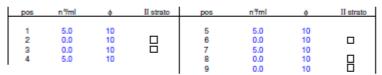
sezione	h	Vt	Vq	Vext	V _{tot}
	[m]	[kWm]	[kWm]	[kN/m]	[kN/m]
d-d	0.80	2.57	1.60	0.00	4.17
0-0	0.60	1.44	1.20	0.00	2.64
f-f	0.40	0.64	0.80	0.00	1.44
9-9	0.20	0.16	0.40	0.00	0.58

condizione sismica +

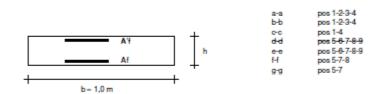
sezione	h	Mt stat	Mt stem	Mq	Mext	Minerzia	M _{tot}	Next	Npp+inexts	N _{tot}
	m	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kWm]	[kWm]	[kN/m]
d-d	0.80	0.53	0.15	0.00	0.00	0.24	0.91	0.00	5.30	5.30
0-0	0.60	0.22	0.08	0.00	0.00	0.13	0.42	0.00	3.97	3.97
f-f	0.40	0.07	0.02	0.00	0.00	0.08	0.14	0.00	2.65	2.65
9.9	0.20	0.01	0.00	0.00	0.00	0.01	0.03	0.00	1.32	1.32


sezione	h	Vt atat	Vt alam	Vq	Vext	Vinerzia	V _{tot}
	[m]	[kWm]	[kWm]	[kN/m]	[kN/m]	[kN/m]	[kWm]
d-d	0.80	1.97	0.57	0.00	0.00	0.59	3.13
6-6	0.60	1.11	0.32	0.00	0.00	0.45	1.87
f-f	0.40	0.49	0.14	0.00	0.00	0.30	0.93
9-9	0.20	0.12	0.04	0.00	0.00	0.15	0.31

condizione sismica -


sezione	h	Mt stat	Mt stam	Mq	Mext	Minerzia	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kWm]	[kWm]	[kN/m]
d-d	0.80	0.53	0.09	0.00	0.00	0.24	0.85	0.00	4.70	4.70
e-e	0.60	0.22	0.04	0.00	0.00	0.13	0.39	0.00	3.53	3.53
f-f	0.40	0.07	0.01	0.00	0.00	0.08	0.14	0.00	2.35	2.35
9-9	0.20	0.01	0.00	0.00	0.00	0.01	0.02	0.00	1.18	1.18

sezione	h	Vt stat	Vt _{sism}	Vq	Vext	Vinerzia	V _{tot}
	[m]	[kWm]	[kWm]	[kN/m]	[kN/m]	[kN/m]	[kWm]
d-d	0.80	1.97	0.34	0.00	0.00	0.59	2.91
0-0	0.60	1.11	0.19	0.00	0.00	0.45	1.75
f-f	0.40	0.49	80.0	0.00	0.00	0.30	0.87
9-9	0.20	0.12	0.02	0.00	0.00	0.15	0.29


SCHEMA DELLE ARMATURE

ARMATURE

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a-a	0.00	0.00	0.30	3.93	3.93	42.07
b-b	-2.30	0.00	0.30	3.93	3.93	42.07
0-0	-0.81	0.00	0.30	3.93	3.93	42.07
d-d	1.32	5.00	0.25	3.93	3.93	34.88
0-0	0.65	3.75	0.25	3.93	3.93	34.78
f-f	0.25	2.50	0.25	3.93	3.93	34.63
g-g	0.05	1.25	0.25	3.93	3.93	34.51

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

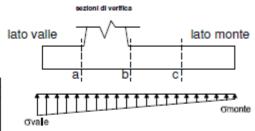
Sez.	VEd	h	V_{rd}	østaffe	I orizz.	I vert.	•	V_{Rad}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(9)	(kN)	- -
a-a	0.00	0.30	114.08	10	20	20	21.8	432.18	Armatura a taglio non necessaria
b-b	4.86	0.30	114.08	10	20	20	21.8	432.18	Armatura a taglio non necessaria
0-0	5.18	0.30	114.08	10	20	20	21.8	432.18	Armatura a taglio non necessaria
d-d	4.17	0.25	99.59	10	20	20	21.8	345.75	Armatura a taglio non necessaria
6-6	2.64	0.25	99.44	10	20	20	21.8	345.75	Armatura a taglio non necessaria
f-f	1.44	0.25	99.29	10	20	20	21.8	345.75	Armatura a taglio non necessaria
g-g	0.56	0.25	99.14	10	20	20	21.8	345.75	Armatura a taglio non necessaria

28

VERIFICA A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

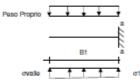
Reazione del terreno


ovalle = N/A+M/Wgg

omonte = N/A - M/Wgg

A = 1.0°B = 0.80 (m²)

Wgg = 1.0°B³6 = 0.11 (m³)

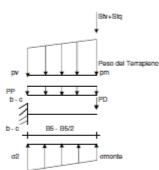

caso	N	м	ovalle	emonte
caso	[kN]	[kNm]	[kWm²]	[kWm³]
Free	19.14	2.33	45.77	2.08
Freq.	20.79	2.12	45.90	6.07
Q.P.	19.14	1.73	40.10	7.75
	19.14	1.73	40.10	7.75

Mensola Lato Valle

Peso Proprio. PP = 7.50 (kN/m) $Ma = \sigma 1"B1^2/2 + (\sigma valle - \sigma 1)"B1^2/3 - PP"B1^2/2"(1±kv)$

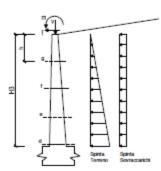
	ovalle	σl	Ma
caso	[kN/m²]	[kN/m²]	[kNm]
Eron	45.77	45.77	0.00
Freq.	45.90	45.90	0.00
0.0	40.10	40.10	0.00
Q.P.	40.10	40.10	0.00

Mensola Lato Monte


PP = 7.50 (kN/m²) peso proprio soleita fondazione PD = 0.00 (kN/m) peso proprio dente

		Nmin	N max Freq	N max QP	
pm	=	14.80	17.80	14.80	(ktW m ²)
pvb	=	14.80	17.80	14.80	(kW m ²)
pvo	=	14.80	17.80	14.80	(ktW m ²)

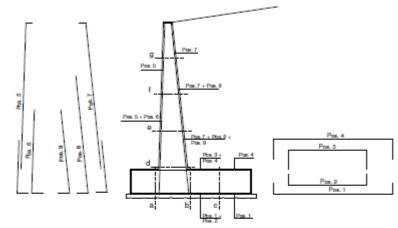
Mb: (a_{monta} (pvb+PP))" B5²/2+(a2b-a_{monta}" B5²/6 (pm-pvb))"B5²/3+ -(Stv+Sqv)"B5-P0" (B5-Bd/2)+Msp+Sp" H2/2


$$\label{eq:matter_model} \begin{split} \text{Mc} = &(\circ_{\text{neath}} \cdot |\text{pvc+PP}|)^* (B5/2)^2 / 2 + |\circ 2\circ \circ_{\text{neath}})^* (B5/2)^2 / 6 \cdot (\text{pm-pvc})^* (B5/2)^2 / 3 + \\ &\cdot (Stv + Sqv)^* (B5/2) \cdot PD^* (B5/2 \cdot Bd/2) + Msp + Sp^* Hd/2 \cdot 2 \end{split}$$

caso	emonte	€2b	Mb	62 0	Mo
caso	[kN/m ²]	[kN/m ²]	[kNm]	[ktV/m ²]	[kNm]
	2.08	32.12	-1.54	17.10	-0.58
Freq.	6.07	33.46	-1.53	19.76	-0.55
0.0	7.75	29.99	-1.08	18.87	-0.41
Q.P.	7.75	29.99	-1.08	18.87	-0.41

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

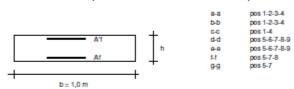
Azioni sulla parete e Sezioni di Calcolo



	condizione Frequente									
sezione		Mt	Mq	Men	Mot	Net	Npp	Not		
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	0.80	0.53	0.32	0.00	0.85	0.00	5.00	5.00		
9-9	0.60	0.22	0.18	0.00	0.40	0.00	3.75	3.75		
1-1	0.40	0.07	0.08	0.00	0.15	0.00	2.50	2.50		

g-g | 0.20 | 0.01 0.02 0.00 | 0.03 | 0.00 1.25 | 1.25 |

	condizione Quasi Permanente											
sezione -	h	Mt	Mq	Men	Mon	Net	Npp	Not				
sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]				
d-d	0.80	0.53	0.00	0.00	0.53	0.00	5.00	5.00				
9-9	0.60	0.22	0.00	0.00	0.22	0.00	3.75	3.75				
1-1	0.40	0.07	0.00	0.00	0.07	0.00	2.50	2.50				
0-0	0.20	0.01	0.00	0.00	0.01	0.00	1.25	1.25				


SCHEMA DELLE ARMATURE

ARMATURE

L	pos	nº/mi	φ	II strato	pos	n9ml		II strato
	4		40			E 0	40	
- 1		5.0	10		-	5.0	10	_
- 1	-	0.0	10	<u></u>	6	0.0	10	
- 1	3	0.0	10		7	5.0	10	_
- 1	4	5.0	10		8	0.0	10	
•					9	0.0	10	

condizione Frequent

Sez.	м	N	h	Af	At	o □	ď	wk	Warm	
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm ³)	(N/mm ²)	(mm)	(mm)	
a - a	0.00	0.00	0.30	3.93	3.93	0.00	0.00	0.000	0.300	
b-b	-1.54	0.00	0.30	3.93	3.93	0.27	16.81	0.025	0.300	
0-0	-0.58	0.00	0.30	3.93	3.93	0.10	6.26	0.009	0.300	
d-d	0.85	5.00	0.25	3.93	3.93	0.19	5.04	0.006	0.300	
0-0	0.40	3.75	0.25	3.93	3.93	0.08	1.04	0.001	0.300	
f-f	0.15	2.50	0.25	3.93	3.93	0.02	0.00	0.000	0.300	
g-g	0.03	1.25	0.25	3.93	3.93	0.00	-	-	0.300	sez. comp

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

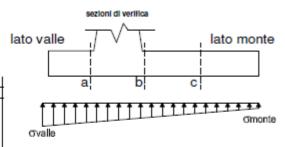
condizione Quasi Permanente

Sez.	м	N	h	Af	A'f	Œ	ø	wk	W	
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm ²)	(N/mm ^r)	(mm)	(mm)	_
a - a	0.00	0.00	0.30	3.93	3.93	0.00	0.00	0.000	0.400	
b-b	-1.08	0.00	0.30	3.93	3.93	0.19	11.75	0.017	0.400	
0-0	-0.41	0.00	0.30	3.93	3.93	0.07	4.46	0.007	0.400	
d-d	0.53	5.00	0.25	3.93	3.93	0.10	1.29	0.001	0.400	
9-9	0.22	3.75	0.25	3.93	3.93	0.04	0.00	0.000	0.400	
1-1	0.07	2.50	0.25	3.93	3.93	0.00	-	_	0.400	sez, compress
g-g	0.01	1.25	0.25	3.93	3.93	0.00	-	-	0.400	sez. compress

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

VERIFICHE TENSIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

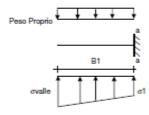

Reazione del terreno

ovalle = N / A + M / Wgg omonte = N / A - M / Wgg

A = 1.0°B = 0.80 (m²)

 $Wgg = 1.0^{\circ}B^{2}/6 = 0.11$ (m²)

caso	N	M	ovalle	o monte
Casu	[kN]	[kNm]	[kN/m ²]	[kWm ²]
statico	19.14	2.53	47.66	0.19
Stanco	21.34	2.26	47.84	5.51
	20.28	3.34	57.44	0.00
sisma+	20.28	3.34	57.44	0.00
	18.00	3.14	53.18	0.00
sisma-	18.00	3.14	53.18	0.00



Mensola Lato Valle

Peso Proprio. PP = 7.50 (kN/m)

 $Ma = \sigma 1^*B1^2/2 + (\sigma valle - \sigma 1)^*B1^2/3 - PP^*B1^2/2^*(1\pm kv)$

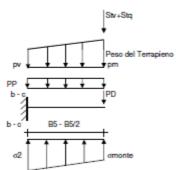
caso	ovalle	61	Ma
Casu	[kWm ²]	[kN/m ²]	[kNm]
statico	47.66	47.66	0.00
Statico	47.84	47.84	0.00
sisma+	57.44	57.44	0.00
SISHIG+	57.44	57.44	0.00
sisma-	53.18	53.18	0.00
Sisiliar	53.18	53.18	0.00

Mensola Lato Monte

PP = 7.50 (kN/m²) peso proprio soletta fondazione
PD = 0.00 (kN/m) peso proprio dente

 Nmin
 N max stat
 N max sism

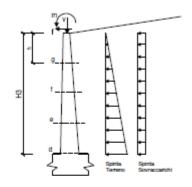
 pm
 =
 14.80
 18.80
 14.80
 (kN/m²)


 pvb
 =
 14.80
 18.80
 14.80
 (kN/m²)

 pvc
 =
 14.80
 18.80
 14.80
 (kN/m²)

$$\label{eq:mb_def} \begin{split} &Mb_{-}(\sigma_{month}^{-}(pv\,b_{+}PP)^{*}(1\pm bv))^{*}BS^{2}/2 + (\sigma 2b_{-}\sigma_{month})^{*}BS^{2}/6 + (pm_{+}pv\,b))^{*}(1\pm bv)^{*}BS^{2}/3 + \\ &- (Stv_{+}Sqv)^{*}BS_{-}PD^{*}(1\pm bv)^{*}(BS_{-}Bd/2)_{-}PD^{*}kh^{*}(Hd_{+}H2/2)_{+}Msp_{+}Sp^{*}H2/2 \end{split}$$

 $\begin{aligned} &Mc = (\sigma_{monter}(pvc_+PP)^*(1\pm kv_*))^*(Bs/2)^2/2 + (\sigma_2c_-\sigma_{monte})^*(Bs'2)^2/6 + (pm-pvc)^*(1\pm kv)^*(Bs'2)^2/3 + (Stv_+Sqv)^*(Bs'2)_-PD^*(1\pm kv)^*(Bs'2_-Bd'2_-)_-PD^*(kh^*(Hd_+Hd'2_-)_+Msp_+Sp^*Hd'2_-) \end{aligned}$

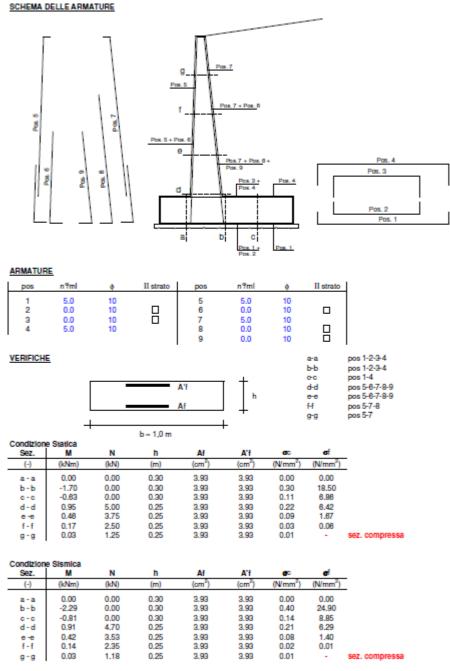

caso	monte	g 2b	Mb	g 2c	Mc
Casu	[kWm ²]	[kN/m ²]	[kNm]	[kWm²]	[kNm]
statico	0.19	32.83	-1.70	16.51	-0.63
Station	5.51	34.61	-1.68	20.08	-0.60
sisma∔	0.00	37.10	-2.29	14.73	-0.81
SiSilia+	0.00	37.10	-2.29	14.73	-0.81
sisma-	0.00	33.54	-2.15	11.94	-0.75
SISTING	0.00	33.54	-2.15	11.94	-0.75

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

 $\begin{array}{lll} N_{out} & = & _{V} \\ N_{pp+inexts} = \Sigma Pm_{i}^{*}(1\pm kv) \end{array}$

condizione statica


	COLUMN CO											
sezione		h	Mt	Mq	Mext	M _{tot}	Next	N _{pp}	N _{tot}			
		[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kWm]	[kN/m]			
	d-d	0.80	0.53	0.43	0.00	0.95	0.00	5.00	5.00			
	e-e	0.60	0.22	0.24	0.00	0.46	0.00	3.75	3.75			
	f-f	0.40	0.07	0.11	0.00	0.17	0.00	2.50	2.50			
	a-a	0.20	0.01	0.03	0.00	0.03	0.00	1.25	1.25			

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	Mext	Minerala	M _{tot}	Next	N _{pp+inerzia}	N _{tot}
221012	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kWm]	[kN/m]
d-d	0.80	0.53	0.15	0.00	0.00	0.24	0.91	0.00	5.30	5.30
e-e	0.60	0.22	0.08	0.00	0.00	0.13	0.42	0.00	3.97	3.97
f-f	0.40	0.07	0.02	0.00	0.00	0.08	0.14	0.00	2.65	2.65
979	0.20	0.01	0.00	0.00	0.00	0.01	0.03	0.00	1.32	1.32

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	Mext	Minerala	M _{tot}	Next	Npp+inerzia	N _{tot}
SCETORE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	0.80	0.53	0.09	0.00	0.00	0.24	0.85	0.00	4.70	4.70
6-6	0.60	0.22	0.04	0.00	0.00	0.13	0.39	0.00	3.53	3.53
f-f	0.40	0.07	0.01	0.00	0.00	0.08	0.14	0.00	2.35	2.35
9-9	0.20	0.01	0.00	0.00	0.00	0.01	0.02	0.00	1.18	1.18

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

J.2 GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI

Vista la limitata rilevanza dell'intervento in oggetto, si omettono i contenuti del presente paragrafo.

K. CODICE DI CALCOLO

Per la modellazione del muro di sostegno è stato utilizzato il foglio di calcolo PROGETTI E CALCOLO DI **GEOTECNICA CON EXCEL**, terza edizione, aggiornata e ampliata secondo le NTC 2008, di Marco Mancina, Roberto Nori, Pia Iasiello, DEI s.r.l. TIPOGRAFIA DEL GENIO CIVILE.